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Peculiarities of the Hartree approach to the temperature- 
dependent anharmonic oscillator 

J Nufiez, A Plastin0 and R Rossignoli 
Physics Department, National University, CC67, La Plata 1900, Argentina 

Received 15 April 1987, in final form 7 September 1987 

Abstract. With reference to the anharmonic oscillator problem, a temperature-dependent 
Hartree approach that is able to deal with quite general asymmetric potentials is presented. 
The mean-field approximation is seen to exhibit interesting phenomena associated with 
temperature changes. 

1. Introduction 

Interest in the one-dimensional anharmonic oscillator has been both sustained and 
intense in the past few decades, due mainly to its relevance for the study of molecular 
vibrations and to its role in the modelling of non-linear quantum field theories (for 
instance, Boyd 1978, Graffi and Grecchi 1973, Biswas et a1 1973, Bender and Wu 1973, 
Lu et a1 1973, Gillespie 1976, Bozzolo er a1 1982, Flessas et a1 1983, Chaudhuri and 
Mukherjee 1983, Znojil and Tater 1986). 

A few years ago, a very elegant and powerful two-step approach to one-dimensional 
harmonic oscillators was introduced (Hsue and Chern 1984, hereafter referred to as 
I, Hsue 1986, Esebbag et a1 1985), based upon a generalised coherent-state ansatz and 
a Bogoliubov transformation. This method can be shown to be equivalent to the 
Hartree approximation and has been generalised to the finite-temperature case (Nufiez 
et a1 1986, hereafter referred to as II) ,  but only with reference to some special situations, 
namely even potentials V ( x )  that exhibit just one minimum. In such cases, the mean 
value of the coordinate x will vanish, and the Hartree mean field is governed by a 
single parameter: a temperature-dependent frequency. Changes either in the coupling 
constant (of V ( x ) )  or in the temperature induce a smooth response from the Hartree 
field and no interesting phenomena are to be seen. 

We wish here to generalise the work developed in I1 to a more general situation, 
allowing for potentials V ( x )  that exhibit two or more minima. The concomitant 
physical problem becomes then a more interesting one. The mean value (x*) appears 
now as an additional variational parameter. Further, the self-consistent Hartree field 
may exhibit different behaviours for the diverse minima of V ( x ) ,  which may result in 
the appearance of various mean-field solutions and concomitant critical phenomena, 
as the temperature (or the coupling constant) changes. This fact, as far as we know, 
has not been stressed in recent literature (for instance, I ) .  

It often happens, with regards to quite diverse physical contexts, that the appropriate 
Hartree (or Hartree-Fock) solution displays rather abrupt changes if some parameter 
of the system is modified, and one then speaks (more or less loosely) of phase transitions, 
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shape instabilities, etc, which are of considerable interest because they point towards 
possible instabilities of the corresponding solution. Thus, their study may provide one 
with valuable insights into the physics of the system under analysis. The present work 
attempts to perform a detailed study of the temperature-dependent anharmonic oscil- 
lator within this spirit in the hope that it may serve as a model for more complex 
situations. 

A suitable generalisation of the formalism of I1 is represented in (I 2. Application 
to a general anharmonic oscillator is dealt with in 9 3, and two particularly interesting 
situations are considered, respectively, in $ 3  4 and 5. The exact solution is also discussed 
in (I 5, and some conclusions are drawn in 9 6.  

2. Formalism 

We proceed here to generalise the formalism in 11, so as to deal with quite general 
potentials V ( 0 )  that do not exhibit any particular symmetry. We start by defining 
‘unperturbed’ (boson) creatio? and annihiliation operators out of the coordinate 
6 and the linear momentum P 

a t  = ( 1 / J 2 ) ( 6 - i P )  a = ( 1 / J 2 ) ( 6 + i P )  (2.1) 

in order to deal with Hamiltonians of the form 

A = p+ V( 6). 
We shall set both h and Boltzmann’s constant equal to unity and express the exact 

(2.3) 

where 3 = -In PItrial is the so-called entropy operator and p is the inverse temperature 
( p  = 1 /  T ) .  The trial density matrix that minimises F is clearly the canonical one 
6 = exp(-ptj)/  T, exp(-pA). 

The central idea that underlies the Hartree scheme is that of working with a one-body 
density operator b. Consequently, the temperature-dependent Hartree approximation 
(TDHA) for F will entail performing the minimisation of (2.3) within the set of one-body 
density operators 

free energy as 

F = min Tr[ btrial( A - Tg)]  = - T In[ T, exp( -PA)] 
P t r d  

6 = exp(h,- w p b - b )  (2.4) 
where bt and b are boson operators related to the ‘unperturbed’ ones (a ’ ,  a )  by means 
of a general Bogoliubov transformation 

b t  = - [a + y I 5 = a * a - t * a t + y *  (2.5) 

with /ai2-  1[12 = 1 solas to enforce boson commutation properties. ‘New’ canonical 
coordinates 6’ and P’ are associated to bt,  b. namely 

@= Re(a - (* )o+Im(a  -[*)++fiRe y 

f i r =  Re(a + (*)@ - Im(a  + (*)6-& Im y 

although, witbin the present context, a, 5 and y may be assumed real, due to the 
structure of H, which allows one to recast (2.6) as 

0’ = (6  - q )  e-h fif= f i  eh q = - a y  eh a = cosh(h) (2.7) 
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and one ascertains thus that the Bogoliubov transformation is merely a scaling transfor- 
mation, with an appropriate translation. 

Mean values of a given operator with respect to the density operator (2 .4)  can be 
easily obtained by recourse to Wick's theorem (Coleman 1975). The necessary 
ingredients are 

f- (b'b)  = Trp^btb = [exp(pw) - I]-' 

(b')  = ( b )  = (b t2 )  = ( b 2 )  = 0 

( @) = ( P)  = 0 

($2) = (p) = f + S .  

(a')  = ( 1 / J 2 ) q  

(a") = f q 2 + 2  a 5 ( f  +SI 
( a + u )  = (a ' ) (a )  + t2 + f j a 2  + t2)  
(4) = 4 

( P )  = 0 

In terms of the original operators some useful relationships are 

( 02) = q2 + G 2  

(e') = (f+ i)2/ G 2  

~2 = ( 6 2 )  - 92 = e'h(f+t) 

( 2 . 8 )  

(2 .9a )  

(2 .9b)  

( 2 . 9 ~ )  

(2.10) 

and, finally, 
1/2 ;E 

( V ( 6 ) ) =  (') e ~ p [ - ( x - q ) ~ / 4 t ] V ( x )  dx t = $ G 2  ( 2 . 1 1 )  
4 T t  -a 

which represents a displaced Gaussian distribution. Of special interest is the case 
V(& = 0" 

( 2 . 1 2 )  

In order to evaluate the Hartree free energy we also need the entropy, which is 

S = - T , p ^ l n ~ = - [ f l n f - ( f + l ) I n ( f + l ) ]  ( 2 . 1 3 )  

in terms of the Bose occupation number (2 .8) .  The TDHA equations are now obtained 
by requiring that F = (A) - T($  be stationary with respect to IV (cf (2 .4 ) ) ,  y (cf ( 2 . 5 ) )  
and h (cf (2 .6 ) ) .  An alternative set of independent variables is given by.f, G and q. 
Minimisation with respect to f is immediately performed (see I I ) ,  and one obtains 

w = ( f + f ) / G 2  = ( 2 . 1 4 ~ )  

given by the well known single-particle expression 

or, alternatively, 

f= {exp[p(f+f) /G21 - 1 1 - I  (2.146) 
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so that one is finally led to the set of equations 

(2.15) 

which, when properly solved, provide us with an  upper bound to the exact free energy. 
The Hartree expression for the specific heat C, = T aS/aT is given by 

(2.16) 

Notice that the values of G2,  q andf that minimise F depend upon the temperature. 
Of course, the occupation number 1; together with S, vanishes at T = 0. 

3. An anharmonic potential 

Let us tackle first the case of an  anharmonic potential, whose Hamiltonian is 

A =p+ V ( 0 )  
= f( p2+ K O 2 )  + S o ' +  Ad4 
= A 1 1 3 [ $ ( @ ! 2  + ~ ' 0 ' 2 )  + , 3 ! 6 r 3  + o r 4 1  (3.1) 

with @ I =  A-"", @ =  h'I6i), 6'  = K 5 I 6 i S  and K ' =  A-'I3K, A > 0, the coordinates corre- 
sponding to a systeAm with the origin located at  the bottom of the potential (if K > 0).  
The potential V ( Q )  exhibits three extrema for K <9S2/16A (two minima and a 
maximum) and  just a single minimum otherwise. 

Recourse to (2.11)-(2.15) yields the following results (we set r =  GI) 

( A )  = $[(f+ i)2/ r + K ( r  + q 2 ) ]  + 6 ( q 3  + 3rq) + A ( q4+  6q2r + 3r2) (3.2) 

a F / a q =  Kq+36(q2+r )+4A(q '+3qr )  = O  (3.3a) 

aF/ar  = $[ K - (f+$)'/r'] +36q +6A(q2+ r )  = 0 (3.36) 

which leads to 

r = -( K q  +4Aq3+36q2)/( 12Aq+36) 

(f+f)'= r 2 ( K  +12Aq2+66q)+12Ar3 

so that just a single equation is to be solved, namely (2.14b) with f and r being 
expressed in terms of the displacement q by means of (3.4) and (3.5). According to 
the relative values of A, 6 and K,  several roots may arise out of (2.14). Two specific 
situations will be discussed in the following two sections. 

In  the classical limit, T+m,  the TDHA yields the correct leading terms in the 
asymptotic expressions of thermodynamic quantities (cf 11). Since in the high- 
temperature region the behaviour of our system is governed by the quartic term, the 
asymptotic expressions presented in I1 remain valid within the present context, save 
for the translation q, 

(3.6) 

As A Q 4 +  SQ3 equals A ( G +  plus quadratic, linear and  constant terms whose 
influence vanishes for T high enough, the meaning of the factor 6/4A in (3.6) becomes 
transparent. 
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4. The bistable potential 

This situation arises when the potential exhibits two minima of equal depth. This will 
happen whenever (a )  K < O  and 6 = O  or (b)  K = S2/2A.  In both cases we deal with 
a symmetric potential (around the origin or  around - 6 / 4 A ,  respectively). For case (a )  
( 3 . 3 )  become 

q[  K + 4 A  ( q 2  + 3 r ) ]  = 0 (f +;)’- r 2 [ 1 2 A ( r +  q 2 ) +  K ]  = 0 ( 4 . 1 )  

so that a symmetric (that is, with q = 0 )  solution will always exist. However, a 
symmetry-breaking ( S B )  degenerate solution is also feasible, for 

q = *(-K/4A -3r) ’”  ( 4 . 2 )  

and r a root of 

(f + 4 ) ‘ + 2 r 2 (  12Ar+ K )  = 0 ( 4 . 3 )  

where f satisfies ( 2 . 1 4 ) .  Real, positive solutions of ( 4 . 3 )  exist only for - K  > 
( 4 8 6 p 3 [ (  f +f)A]”’ .  Thus, at  zero temperature (f= 0), the SB solution exists if 

K < K,( T = 0 )  E KO” -(243/2)”’A2’’.  ( 4 . 4 )  

In this case, five TDHA stationary solutions can be found, namely, two degenerate 
minima, two degenerate saddle points and  a minimum at q = 0. For K > K,, only one 
minimum remains (at q = 0). 

When comparing the displaced minimum ( q  # 0) with the symmetric one ( q  = 0), 
the former lies deeper for K < K I, = 1.084 906 K O .  Thus, there is a narrow range of K 
values for which both solutions exist but the symmetric one prevails. At K = KI, a 
first-order phase transition takes place, with abrupt changes both in r and q. This 
phase transition reflects the fact that, in the exact ground state, the peak of the density 
p (  Q )  = ( QIbexact/ Q )  changes from zero u p  to a degenerate maximum, within the range 
1.3Ko < K < 0 . 7 5 K o ,  although without undergoing any sudden change. 

For fixed values of K similar behaviours are to be observed as the temperature 
grows. The S B  solution exists for T < T,( K )  (or equivalently, K < K,( T )  < K O )  and 
yields the lowest free energy for T < T:( K )  < T , ( K )  (or  K < KL( T )  < K,( T ) ) .  A 
first-order transition occurs at T = T : ( K )  from the S B  to the symmetric solution as T 
increases. However, this transition does not correspond to a change in the peak of 
the exact density, but to a ‘flattenning’ of this density. One should recall that the 
classical density is proportional to exp( - p  V (  0) )  and that classical behaviour should 
be observed for high enough temperatures. This behaviour is properly matched by the 
TDHA as it becomes symmetric once again at  the critical temperature. 

Some typical results are displayed in table 1 .  The SB solution is quite good as far 
as the mean energy is concerned. Whenever the temperature lies within the metastable 
region ( TL < T < T,), the SB solution compares favourably to the symmetric one, if one 
focuses attention upon the (A) values. However, as the latter allows for a better 
estimate of the entropy, it yields a lower free energy. The asymmetric character of the 
SB solution (involving a greater degree of ‘order’) explains the poor entropy estimation. 
A better (larger) entropy would be obtained by restoring the symmetry with a density 
operator of the form bS = t[ &( q )  + p * d ( - q ) ] ,  due  to the well known concavity property 
of S ( b d  stands for the displaced Hartree density operator). 
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Table 1. Quantities of interest for the bistable potential as a function of the temperature 
Z ( a )  Exact results; ( b j  symmetry-breaking (SB) solution; (c )  symmetric solution. The 
parameters of the potential are A = 1.0 and K = 1.5K0. Solution ( c )  is lower than ( b )  for 
T > Th = 1.398. At T = T, = 2.008 the SB solution ceases to exist. 

T F S 

( a )  -1.76138 -1.761 38 0 0 1.441 11 0 

( C )  -0.95561 -0.95561 0 0 0.666 07 0 

( 0 )  -1.972 77 - 1.698 08 0.686 75 0.084 28 1.525 28 0 

( C )  -1,008 86 -0.858 24 0.376 5 5  0.816 87 0.686 59 0 

( a )  -2.27094 -1.615 58 0.819 20 0.338 76 1.522 54 0 

(C) -1.237 41 -0.651 21 0.732 76 0.800 71 0.725 79 0 

( a )  -2.633 58 - 1.440 70 0.994 06 0.514 09 1.508 03 0 
( b )  1.2 -1.715 28 -1.403 75 0.25960 0.774 30 1.508 05 1.154 74 

0 ( C )  -1.578 21 -0.428 98 0.957 69 

( a )  -2.84079 -1.33284 1.077 11 0.561 20 1.501 85 0 

( c j  -1.778 75  -0.31482 1.045 67 0.755 99 0.780 61 0 

( a )  -3.302 06 -1.096 80 1.225 14 0.61 1 88 1.49441 0 

( c j  -2.227 37 -0.082 04 1.191 85 0.739 09 0.814 29 0 

(a )  -3.553 69 -0.973 02 1.290 34 0.624 99 1.493 19 0 
( b )  2.0 -2.103 15 -0.57261 0.765 27 0.913 23 1.236 96 
(C) -2.472 06 -0.036 19 1.254 13 0.732 95 0.830 32 0 

( 0 )  -4.093 52 -0.719 74 1.405 74 0.639 47 I .495 08 0 

( C i  -2.996 15 0.275 71 1.363 27 0.723 72 0.861 06 0 

( b )  0 -1.63700 -1.63700 0 0 1.559 68 1.18779 

( b )  0.4 -1.63709 -1.63624 0.002 12 0.031 66 1.559 52 1.187 69 

( b )  0.8 -1.64924 -1.58467 0.08072 0.482 69 1.548 55 1.180 74 

0.767 73 0.763 01 

( b )  1.4 -1.777 64 -1.266 51 0.365 10 0.824 58 1.474 87 1.132 98 

( b )  1.8 -1.968 95 -0.892 86 0.597 83 0.862 72 1.368 36 1.060 13 

0.962 69 

- - - - - - ( b )  2.4 

5. Effects of a cubic term 

If we add now a (small) cubic term to the preceding bistable potential, the two former 
minima cease to exhibit an identical depth. Consequently, the previous degeneracy 
of the displaced Hartree solutions is removed, and the minimum that existed at the 
origin will be shifted to a different location. The interest of the problem lies now in 
the fact that if the parameter 6 in (3.1) starts to grow, new critical phenomena become 
apparent. 

Let us concentrate our attention upon the situation illustrated in table 1, namely 
the particular case K =1.5Ko. For S small enough, the overall picture is that of the 
former section. First-order corrections (in 6 )  to the coordinate q are 

-36r, - K-12hr,, ”‘ 36(r,+K/16A) 
(5.1) 

where the subscript 0 refers to the symmetric solution and the subscript d to the SB 

one. The three minima ‘move’ towards the location of the deepest minimum of V( Q ) ,  
whereas the two saddle points are displaced in the opposite direction. Now at T=O, 

K + 12Ard q0=12Ar,+K q d = * (  4A --) - 
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when 6=*0.0375, one of the minima and one of the saddle points disappear, and we 
are left with two minima (located in the vicinity of the corresponding wells) and a 
saddle point. At 6=*0.9095, just a single TDHA solution remains, corresponding to 
the deepest well (the shallow one exhibits, for this value of 6, a depth of about 26.6% 
of that corresponding to the deepest well). 

The behaviour of the system for fixed values of 6 and K as T grows is illustrated 
in table 2 and figure 1, for the case 6=-0.1. A ‘near-symmetric’ ( N S )  solution, not 
present at T=O, appears at T =  Tc,=0.675 (together with a saddle point), becoming the 
deepest one at T =  Tcz= 1.704. All the remaining solutions disappear for sufficiently 
high T. This N S  solution exhibits a lower degree of order than the displaced ones, i.e. 
a larger fluctuation and a greater entropy, which accounts for the lower free energy, 
although its mean-energy prediction is poor. In order to interpret the meaning of these 
TDHA transitions, it may be helpful to look at the behaviour of the exact (0) values, 
illustrated in figure 2, which undergo a rapid decrease for small T. 

Table 2. Same quantities as in table 1 but for the potential V ( x ) = ~ K x 2 + ~ S . x 3 + A x 4 ,  with 
A=1.0, S=-O.1 and K = l . 5 K 0 .  ( a )  Exact results; ( b )  ‘displaced’ solution; ( c )  ‘near 
symmetric‘ solution; ( d )  ‘shallow-minimum’ solution. At T=O, ( e )  refers to the first excited 
state (see text). 

T 

0 

0.6 

0.9 

1.5 

1.8 

2.1 

2.4 

F 

- 1.927 27 
- 1.868 02 
- 
-1.426 25 
-1,47047 

-2.163 42 
-1.869 93 
- 
- 1.428 82 

-2.390 47 
-1.888 18 
-1.332 02 
-1.450 72 

-2.975 06 
-2.035 96 
-1.899 18 
-1.619 84 

-3.323 89 
-2.178 37 
-2.240 18 
-1.785 78 

-3.704 15 
-2.371 49 
-2.61 1 02 
- 

-4.1 11 96 
- 
-3.007 68 
- 

- 1.927 27 
- 1.868 02 
- 
-1.426 25 
- 1.470 47 

-1.755 58 
- 1.856 82 
- 
-1.412 13 

- 1.640 84 
-1.789 13 
-0.625 53 
-1.334 37 

- 1.3 16 96 
- 1.443 45 
-0.277 22 
-0.943 52 

-1.13234 
-1.177 56 
-0.100 03 
-0.562 34 

-0.941 71 
-0.819 93 

0.079 22 
- 

-0.748 19 
- 
-0.260 36 
- 

0 0 
0 0 

0 0 
0 0 

0.679 74 0.314 35 
0.021 91 0.206 16 

0.027 82 0.244 83 

0.832 92 0.450 10 
0.110 06 0.566 45 
0.784 99 0.799 51 
0.129 28 0.610 09 

1.105 40 0.600 23 
0.395 01 0.832 25 
1.081 31 0.75467 
0.450 88 0.845 01 

1.217 53 0.628 23 
0.556 00 0.855 34 
1.18897 0.741 83 
0.679 69 0.894 04 

1.315 42 0.641 38 
0.738 84 0.880 40 
1.281 07 0.732 46 

- - 

- - 

- - 
1.401 60 0.648 39 

1.361 68 0.725 46 
- - 

- - 

0.282 99 
0.145 26 

0.152 62 
0.370 98 

1.365 50 
0.146 36 

0.15422 

1.445 89 
0.153 15 
0.717 50 
0.163 22 

1.47491 
0.19071 
0.782 72 
0.2 15 32 

1.478 14 
0.224 12 
0.809 60 
0.289 41 

1.481 54 
0.279 92 
0.834 65 

- 

- 

- 

1.486 19 

0.858 32 
- 

- 

1.15474 
1.234 08 
- 

-1.141 85 
-1.051 92 

0.449 20 
1.232 1 2  
- 

-1.139 76 

0.317 58 
1.224 38 
0.172 49 

-1.12793 

0.203 46 
1.177 13 
0.118 36 

-1.056 81 

0.17429 
1.133 50 
0.105 65 

-0.946 16 

0.153 49 
1.056 71 
0.096 50 
- 

0.137 98 

0.089 54 
- 

- 
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0 T,,l.OT,, 7;? h,2.OTC, 30 
T 

Figure 1.  Free energies corresponding to the different solutions of (3.3) (full curves), and 
exact results, for the potential with the cubic term. The parameters are the same as those 
in table 2. Critical temperatures are indicated. T,, and T,, indicate ‘level crossing’. T,, 
is that temperature at which the symmetric solution appears for the first time. T,, and T,,, 
on the other hand, are the critical temperatures above which the corresponding solution 
ceases to exist. For the meaning of ( b ) ,  (c ) ,  ( d )  see table 2. 

I I I , 
0 10 2.0 3s 

T 

Figure 2. Mean value of the coordinate against T, according to the Hartree solutions ( b )  
and (c) ,  and exact values, for the Hamiltonian of table 2. The vertical broken lines indicate 
mean-field ’phase transitions’ according to the maximum entropy ( 1  ), minimum free energy 
(2) ,  and minimum energy (3)  criteria. 
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The former behaviour occurs for 0.0375 < 161 < 1.02. For higher values of 6, the NS 

solution does not reappear at finite T, and the evolution of the system (as T grows) 
becomes smooth in TDHA. 

The metastable TDHA solution corresponding to the shallow well can be regarded 
at T = 0 as an approximation to the first excited state of G, At finite TDHA depicts 
approximately the evolution of this metastable configuration, which disappears for 
T >  Tc3. 

The TDHA prediction for the specific heat is in general poor at low temperatures, 
but results improve as T grows. 

The exact eigenvalues and eigenfunctions of (3.1) have keen computed according 
to the procedures discussed in I, i.e. the diagonalisation of H in an optimised Hartree 
basis. However, since several Hartree solutions may exist at T = 0, the question of 
which one yields the fastest convergence arises. In general, the deepest Hartree solution 
is the best as regards the ground state. But it may not be so for other levels. 

For instance, in the cubic case discussed in table 2 ,  a 20 x 20 diagonalisation with 
the deepest T = 0 Hartree basis yields the best estimate for the ground state. Indeed, 
using the Hartree basis centred around the shallow minimum yields a very good value 
for the first excited state and, in addition, better figures for the first few levels (see 
table 3). With a 40 x 40 diagonalisation, however, all differences vanish, and both 
solutions yield exact values for the first nine levels up to eight significant digits. 

Table 3. Lowest lying levels for the Hamiltonian of table 2, for various dimensions of the 
corresponding energy matrix and different Hanree basis: ( b )  indicates that corresponding 
to the deepest T=O Hartree solution, while ( d )  refers to the basis centred around the 
shallow minimum. 

l o x  I O  20 x 20 30 x 30 40 x 40 

( b )  ( d )  ( b )  ( d )  ( b )  ( d )  ( b ) ,  ( d )  

E ,  -1.9200907 -1.492 1396 -1.9269317 -1.921 2578 -1.927 2677 -1.927 2671 -1.927 2677 
E,  0.308 8737 0.077 1951 -1.4409766 -1.4700670 -1.4704705 -1.4704708 -1.4704708 
E,  1.878 0254 1.843 4449 0.669 4388 0.655 0543 0.639 9225 0.639 9237 0.639 9220 
E ,  4.747 6714 4.622 1944 2.151 9007 2.082 4597 2.042 1451 2.042 1468 2.042 1422 
E ,  8.215 4376 7.991 8896 4.388 1601 4.263 7932 4.150 1208 4.150 1192 4.150 1058 

6. Conclusions 

We have shown in this paper that a simple generalisation of the TDHA formalism 
presented in I 1  enables the mean-field approach to deal with situations in which the 
potential exhibits several extrema, or with general asymmetric potentials. The new 
ingredient is found to be the inclusion, within the formalism, of the translation (0) 
as a variational parameter. 

In this way, even a quartic anharmonic oscillator with a cubic term displays critical 
behaviour in the mean-field approach. The accuracy of the mean-field approximation 
decreases in the critical regions. The Hartree phase transitions can be associated with 
significant (although not sudden) changes in the structure of the exact solution. 
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It is also of interest to point out that the existence of metastable Hartree solutions 
at finite temperatures can be connected to metastable situations that arise in an  exact 
description (for an  illustration of this feature that is found in nuclear physics see Miller 
et al 1986). 

As a final remark, the importance of finding self-consistent Hartree solutions lies 
in the fact that they constitute a good (undercomplete) basis for configuration mixing 
improvements (at T=O) or for those that are achieved by linear combinations of density 
matrices (at T# 0). 
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